Modeling xenon and argon physics with the Noble Element Simulation Technique (NEST)

Vetri Velan
PhD Candidate, UC Berkeley
On behalf of the NEST Collaboration

March 18, 2021

The Landscape of Noble Liquids for Particle Detection

"Detectors using noble elements as the detection medium, such as liquid and gaseous argon and xenon, have risen to become a prime technology for the following Science Drivers: 1) Pursue the physics associated with neutrino mass; 2) Identify the new physics of dark matter; 3) Explore the unknown: new particles, interactions and physical principles"

Basic Research Needs for High Energy Physics Detector Research & Development

DUNE

XENONnT

RED-100

How is Energy Deposited?

How is Energy Deposited?

What is NEST?

- Inter-collaboration collaboration
 - Members from LUX, LZ, XENON, (n)EXO, RED100, COHERENT, DUNE, ICARUS, MicroBooNE, SBN
- We provide models of energy deposition, as well as code to implement this in an actual detector
 - https://github.com/NESTCollaboration
- Primary code is in C++, and bindings are available to easily use NEST in Python
- Xenon models are the most mature, but accurate argon models are available!
- Integration with ROOT and Geant4
- Collaboration website: http://nest.physics.ucdavis.edu/

Who uses NEST?

- Lots of people!
- NEST publications and code have been cited by 200 journal articles, and an additional 50+ theses and conference proceedings
 - Dark matter limits and projections
 - Physics searches
 - Detector calibrations
 - Theoretical models
- Snowmass Letter of Interest was signed by 140+ authors across 4 continents, including experimentalists and theorists

Modeling Atomic and Nuclear Physics of Xenon

- NEST models are semi-empirical: built as averages of world data, incorporating physically-motivated models when feasible
 - O Data as far back as 1970s (Kubota)
- Models for various types of energy deposits: electronic recoils, nuclear recoils, alphas, etc.
- Calculate average light yield, charge yield, recombination → simulate actual energy deposits in a detector

Nuclear Recoils in Xenon

Models the light and charge signals, as well as the amount of energy lost to heat

Electronic Recoils in Xenon

Two models for ERs: "beta" and "gamma"

"Beta" model at 150-200 V/cm is shown in these plots

83mKr in Xenon

Common calibration source in xenon detectors

Model compares well to data from PIXeY,

Xurich, LUX, PANDA-X

Two-step conversion electron process, depositing 32.1 and 9.4 keV. The second deposition depends on the time between the decays, exponentially distributed with $t_{1/2} = 150$ ns.

Energy Resolution in Xenon

$$E = W_{Xe} n_q = W_{Xe} (S1 / g1 + S2 / g2)$$

Low Energy: 37Ar Peak Xe₁T Data % of events per 0.010 keV bin **NEST Sim NEST Fit** 0.6 0.4 0.2 1.5 4.5 Energy [keV(ee)] Reconstructed arxiv:2007.00528

Discrimination in Xenon

Discriminate electronic vs. nuclear recoils by using the charge-to-light ratio

(Other possibilities present, e.g. pulse shape)

Simulation of LUX 2013

Recombination Physics in Xenon

Fluctuation in electron-ion recombination is the largest obstacle to ER/NR discrimination.

NEST models these using lessons from data: these fluctuations are super-binominal and skewed.

Pulse Shape in Xenon

NEST can simulate S1 and S2 (and single electron) pulse shapes in liquid xenon, e.g. to use in raw data generation. Below: NEST simulations, overlapped with LUX measurements.

March 18, 2021 V. Velan

Nuclear Recoils in Argon

Nuclear recoil argon model now deployed in main NEST code

Built using data from SCENE, ARIS, DS-50, Joshi, Aprile, Lippincott, Kimura, Doke, etc.

arXiv:2102.10209

Electronic Recoils in Argon

Electronic recoil model also published in NEST code, based on world data

Disclaimer: this model is still in the progress of being finalized, subject to change

"How can I use NEST?"

- I'm glad you asked!
- NEST is packaged with a variety of tools for you and your collaboration
 - C++ libraries to implement in your framework and/or GEANT4
 - O Python bindings to the C++ code, to use in your existing Python analysis framework
 - Limited system requirements for most usages
 - Examples + tutorials
 - execNEST, rootNEST, bareNEST in C++
 - Nestpy tutorial (really excellent notebook!): http://bit.ly/nestpy
 - O Documentation: analysis notes available at http://nest.physics.ucdavis.edu/
 - Want to request a new functionality? You can do so via Github: https://github.com/NESTCollaboration/

Demonstration of **NEST**

[Note: if viewing a PDF document, click on the image to access the demo video on Youtube]

Closing Remarks

- NEST is directly tied to Priority Research Direction 6: "Improve the understanding of detector microphysics and characterization"
 - But our code and models are applicable to many PRDs, TRs, Science Drivers
 - E.g. "Manipulate detector media to enhance physics reach", "Addressing challenges in scaling technologies"
 - Fundamentally, NEST is a one-stop shop to answer most questions about designing your detector and doing data analysis
- NEST is stable enough to be reliable, while also evolving to incorporate new data and features
- Recent + upcoming changes: improvements to LAr ER model, LXe ER model, gamma calibrations, W-value, noise

NEST Collaboration Members

State University of New York

